• slogan_start
  • gnsmart
  • simplex
  • duplex

Geo++® GNSMART (GNSS State Monitoring and Representation Technique)

Category: .

GNSMART

Geo++® GNSMART (GNSS State Monitoring and Representation Technique) is the first system in the world which offers the possibility of total coverage of homogeneous absolute positioning to centimeter accuracy in real-time.

The GNSS-SMART Method

GNSMART is based on the procedures known as GNSS-SMART (Global Navigation Satellite System – State Monitoring And Representation Technique).

With any GNSS (currently GPS or GLONASS), high resolution observations are made, but in practice these are still affected by numerous sources of error (satellite orbit errors, ionospheric and tropospheric effects).The complete system including its error sources can always be considered to be in a dynamic state. GNSS-SMART comprises the monitoring of the state of the whole system including regional atmospheric effects, together with its presentation and delivery to the user for the purpose of position determination with the highest accuracy, reliability and availability, both in real-time and by post-processing.

From the user’s point of view, in contrast to conventional procedures, no knowledge of the internal structure of the GNSMART system is necessary. By means of the reference data supplied by GNSMART, the user receives observations free of systematic errors, which enable him to determine absolute positions with a homogeneous and high standard of accuracy using a single mobile instrument. Thus it is possible for the first time to make very accurate measurements in relation to a high order reference frame without local connecting observations.

The Practical Realization GNSMART

GNSMART is the Geo++ realization of GNSS-SMART. It contains all necessary software components for the monitoring and representation of the system state of GPS and GLONASS. Monitoring is achieved by means of reference stations (monitoring stations) which, with a spacing of 50 km or more, can provide complete coverage of reference data to enable position fixing with centimeter accuracy in real-time.

Monitoring the System State

The simultaneous adjustment and complete modeling of multi-station observations allows the determination of orbit errors, ionospheric and tropospheric delays as well as the reduction of multipath effects. Antenna phase center variations (PCV) are corrected by using calibrated antennas. This enables the use of different antenna types within a network. Beside the above mentioned state parameters GNSMART contains a complete model for satellite receiver clocks. This allows GNSMART to completely model the absolute state of the system with carrier phase accuracy. Through this, future requirements can be fulfilled in an optimal sense (expansion to regional and global networks, higher accuracy or new applications).

Network Sizes

Due to the complete system model of GNSMART, there is no restriction in network size; i.e. in general, GNSMART can be used for global, regional and local applications. There is no limit for the number of stations within a network. For sufficient redundancy, the minimum number of stations within a network should be five. If a high number of stations (e.g. 50) are processed, the computation can easily be splitted to multiple computers.
The bigger the number of stations within a network is, the longer the distances between the stations can be. As an example, if for a 5 station network the distances are between 50 and 70 kilometers, it is possible for the same accuracy requirements to have more than 100 kilometer distances for a 15 station network. With reduced requirements, especially for the initialization time, even longer distances are possible (GNSMART sparse network). With reduced requirements, especially for the initialization time, even longer distances are possible (GNSMART sparse network).

Central or Decentral Concept

Networks may be organized in an central or decentral way. In the central configuration all observations are simultaneously processed in an computing center. The software module GNREF can be configured to run at the remote reference station or in the computing center. The decentral configuration allows the estimation of state information on every reference station utilizing the observation of neighboring stations. Any mixture of central an decentral concept is possible.
Communication

Data transmission within a GNSMART network is managed by GNCOM. Different media like computer networks (TCP/IP, NetBios), modem lines (ISDN, GSM) and broadcast radio can be used. The primary concept of GNSMART utilizes a broadcast signal, which allows GNSMART to work with simplex communication media. This is one main advantage over systems relying on duplex communication links.

User Interface

Reference information can be made available to the user through the following accepted international standardized interfaces:

*RTCM (Version 2.x or 3.x) for real-time applications
*RINEX for postprocessing applications.

The additional information from the network processing may be supplied as FKP or VRS. Due to the complete state model, GNSMART is capable of supporting future standard definitions, since the data content of such techniques can be derived from the state vector. Communication to the user is performed through the same media as within the network. The advantage of broadcasting information through radio, DAB or Internet is available. The data signals may be encrypted for charging and access control. Additionally the communication with a rover is conducted with SMARTgate. SMARTgate integrates access control and charging functionality, besides automatic connection features and fallback options to different media.

Geo++ GNSMART rigorously supports the different currently used formats for Real-Time Network applications. These are the termed concepts

*FKP (“Flächenkorrekturparameter”, areal correction parameter)
*MAC (Master Auxiliary Concept)
*VRS (Virtual Reference Station)

In addition to these concepts Geo++ GNSMART provides flexible features, extensions and improvements to further enhance and adjust the functionality for any given application.

The GNSMART System

The components of GNSMART (with details of corresponding Geo++® products) are as follows:

*Reference stations (GNREF),
*Communications systems (GNCOM, RTCM_IN, RTCM_OUT),
*Multi-station solutions (GNNET) and
*Representation models (Geo++® FKP, RTCM++, RTCM-AdV, GNPRED, GNVRX).

GNSMART Applications

GNSMART can be applied to a wide range of precise positioning tasks. Application areas include:

#Extensive reference station networks for total coverage of an area (for example SAPOS® in Germany),
#Applications for providers of wide-area or linear infrastructure, including energy distribution, railways, roads, pipelines, etc. (for example SATVB Satellitenvermessung Burgenland/Austria),
#Surveying for wide-area or linear projects which exceed the range of RTK systems,
#Hydrography and other precise positioning offshore,
#Construction plant control for road building and utilities’ networks,
#Atmospheric science Weather forecast
#and many others

GNSMART References

GNSMART systems are working world wide for many years. See the list of GNSMART installations for references.

All modern RTK rovers can be used with GNSMART. Find some examples under GNSMART compatible RTK rover systems.